Nanoparticle-antagomiR based targeting of miR-31 to induce osterix and osteocalcin expression in mesenchymal stem cells
نویسندگان
چکیده
Mesenchymal stem cells are multipotent adult stem cells capable of generating bone, cartilage and fat, and are thus currently being exploited for regenerative medicine. When considering osteogenesis, developments have been made with regards to chemical induction (e.g. differentiation media) and physical induction (e.g. material stiffness, nanotopography), targeting established early transcription factors or regulators such as runx2 or bone morphogenic proteins and promoting increased numbers of cells committing to osteo-specific differentiation. Recent research highlighted the involvement of microRNAs in lineage commitment and terminal differentiation. Herein, gold nanoparticles that confer stability to short single stranded RNAs were used to deliver MiR-31 antagomiRs to both pre-osteoblastic cells and primary human MSCs in vitro. Results showed that blocking miR-31 led to an increase in osterix protein in both cell types at day 7, with an increase in osteocalcin at day 21, suggesting MSC osteogenesis. In addition, it was noted that antagomiR sequence direction was important, with the 5 prime reading direction proving more effective than the 3 prime. This study highlights the potential that miRNA antagomiR-tagged nanoparticles offer as novel therapeutics in regenerative medicine.
منابع مشابه
The Effects of Iron Oxide Nanoparticle on Differentiation of Human Mesenchymal Stem Cells to Osteoblast
Introduction: IIron oxide nanoparticles (IO NP) have an increasing number of biomedical applications. To date, the potential cytotoxicity of these particles remains an issue of debate. Little is known about the cellular interaction or toxic effects of IO NP on differentiation of stem cells. The aim of the present study was to investigate the possible toxic role of different doses of IO NP in di...
متن کاملEffects of Oral Dosage of Lead Acetate II on Osteocalcin Gene Expression in Rat Mesenchymal Stem Cells
Background: Lead (Pb) is a heavy metal that has devastating effects on many animal tissues. In this study we investigated the effects of orally-dosed lead acetate II on osteocalcin gene (osteocalcin) expression in mesenchymal stem cells grown in an osteogenic medium. Osteocalcin is an abundant bone matrix differentiation protein. Methods: Twelve male Wistar rats were divided into three groups ...
متن کاملExpression of Collagen Type II and Osteocalcin Genes in Mesenchymal Stem Cells from Rats Treated with Lead acetate II
Background: Lead is one of the sustainable metals with devastating effects on many tissues. This study, examined the adverse effect of lead poisoning on the gene expression of collagen type II and osteocalcin by mesenchymal stem cells (MSCs) cultured in chondrogenic and osteogenic media, respectively. Methods: We used 18 male Wistar rats, divided in 3 groups. In addition to libitum feed as the...
متن کاملGene manipulation of human adipose-derived mesenchymal stem cells by miR-34a
Background: Safe and effective gene therapy is considered as one of the therapeutic goals in many diseases. Due to the important role of stem cells in cell therapy, this study aimed to produce human adipose-derived mesenchymal stem cells (hASCs) using the miR-34a overexpression. Materials and methods: The hsa-mir-34a precursor sequence was cloned into the PCDH lentiviral vector. The recombinant...
متن کاملThe protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کامل